ACM模板

ACM模板

总结了一些可能会用到的模板
下面是一些板子,可能不全

头文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#define _CRT_SBCURE_NO_DEPRECATE
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>

using namespace std;

const int maxn = 110;
const int INF = 0x3f3f3f3f;

经典

埃拉托斯特尼筛法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
|埃式筛法|
|快速筛选素数|
|16/11/05ztx|
*/

int prime[maxn];
bool is_prime[maxn];

int sieve(int n){
int p = 0;
for(int i = 0; i <= n; ++i)
is_prime[i] = true;
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; ++i){ // 注意数组大小是n
if(is_prime[i]){
prime[p++] = i;
for(int j = i + i; j <= n; j += i) // 轻剪枝,j必定是i的倍数
is_prime[j] = false;
}
}
return p; // 返回素数个数
}

快速幂

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
|快速幂|
|16/11/05ztx|
*/

typedef long long LL; // 视数据大小的情况而定

LL powerMod(LL x, LL n, LL m)
{
LL res = 1;
while (n > 0){
if (n & 1) // 判断是否为奇数,若是则true
res = (res * x) % m;
x = (x * x) % m;
n >>= 1; // 相当于n /= 2;
}
return res;
}

大数模拟

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
大数加法

/*
|大数模拟加法|
|用string模拟|
|16/11/05ztx, thanks to caojiji|
*/

string add1(string s1, string s2)
{
if (s1 == "" && s2 == "") return "0";
if (s1 == "") return s2;
if (s2 == "") return s1;
string maxx = s1, minn = s2;
if (s1.length() < s2.length()){
maxx = s2;
minn = s1;
}
int a = maxx.length() - 1, b = minn.length() - 1;
for (int i = b; i >= 0; --i){
maxx[a--] += minn[i] - '0'; // a一直在减 , 额外还要减个'0'
}
for (int i = maxx.length()-1; i > 0;--i){
if (maxx[i] > '9'){
maxx[i] -= 10;//注意这个是减10
maxx[i - 1]++;
}
}
if (maxx[0] > '9'){
maxx[0] -= 10;
maxx = '1' + maxx;
}
return maxx;
}

大数阶乘

/*
|大数模拟阶乘|
|用数组模拟|
|16/12/02ztx|
*/

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int maxn = 100010;

int num[maxn], len;

/*
在mult函数中,形参部分:len每次调用函数都会发生改变,n表示每次要乘以的数,最终返回的是结果的长度
tip: 阶乘都是先求之前的(n-1)!来求n!
初始化Init函数很重要,不要落下
*/

void Init() {
len = 1;
num[0] = 1;
}

int mult(int num[], int len, int n) {
LL tmp = 0;
for(LL i = 0; i < len; ++i) {
tmp = tmp + num[i] * n; //从最低位开始,等号左边的tmp表示当前位,右边的tmp表示进位(之前进的位)
num[i] = tmp % 10; // 保存在对应的数组位置,即去掉进位后的一位数
tmp = tmp / 10; // 取整用于再次循环,与n和下一个位置的乘积相加
}
while(tmp) { // 之后的进位处理
num[len++] = tmp % 10;
tmp = tmp / 10;
}
return len;
}

int main() {
Init();
int n;
n = 1977; // 求的阶乘数
for(int i = 2; i <= n; ++i) {
len = mult(num, len, i);
}
for(int i = len - 1; i >= 0; --i)
printf("%d",num[i]); // 从最高位依次输出,数据比较多采用printf输出
printf("\n");
return 0;
}

GCD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
|辗转相除法|
|欧几里得算法|
|求最大公约数|
|16/11/05ztx|
*/

int gcd(int big, int small)
{
if (small > big) swap(big, small);
int temp;
while (small != 0){ // 辗转相除法
if (small > big) swap(big, small);
temp = big % small;
big = small;
small = temp;
}
return(big);
}

LCM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
|辗转相除法|
|欧几里得算法|
|求最小公倍数|
|16/11/05ztx|
*/

int gcd(int big, int small)
{
if (small > big) swap(big, small);
int temp;
while (small != 0){ // 辗转相除法
if (small > big) swap(big, small);
temp = big % small;
big = small;
small = temp;
}
return(big);
}

全排列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
|求1到n的全排列, 有条件|
|16/11/05ztx, thanks to wangqiqi|
*/

void Pern(int list[], int k, int n) { // k表示前k个数不动仅移动后面n-k位数
if (k == n - 1) {
for (int i = 0; i < n; i++) {
printf("%d", list[i]);
}
printf("\n");
}else {
for (int i = k; i < n; i++) { // 输出的是满足移动条件所有全排列
swap(list[k], list[i]);
Pern(list, k + 1, n);
swap(list[k], list[i]);
}
}
}

二分搜索

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/*
|二分搜索|
|要求:先排序|
|16/11/05ztx, thanks to wangxiaocai|
*/

// left为最开始元素, right是末尾元素的下一个数,x是要找的数
int bsearch(int *A, int left, int right, int x){
int m;
while (left < right){
m = left + (right - left) / 2;
if (A[m] >= x) right = m; else left = m + 1;
// 如果要替换为 upper_bound, 改为:if (A[m] <= v) x = m+1; else y = m;
}
return left;
}

/*
最后left == right

如果没有找到135577找6,返回7

如果找有多少的x,可以用lower_bound查找一遍,upper_bound查找一遍,下标相减

C++自带的lower_bound(a,a+n,x)返回数组中最后一个x的下一个数的地址

upper_bound(a,a+n,x)返回数组中第一个x的地址

如果a+n内没有找到x或x的下一个地址,返回a+n的地址

lower_bound(a,a+n,x)-upper_bound(a,a+n,x)返回数组中x的个数
*/

数据结构

并查集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
|合并节点操作|
|16/11/05ztx, thanks to chaixiaojun|
*/

int father[maxn]; // 储存i的father父节点

void makeSet() {
for (int i = 0; i < maxn; i++)
father[i] = i;
}

int findRoot(int x) { // 迭代找根节点
int root = x; // 根节点
while (root != father[root]) { // 寻找根节点
root = father[root];
}
while (x != root) {
int tmp = father[x];
father[x] = root; // 根节点赋值
x = tmp;
}
return root;
}

void Union(int x, int y) { // 将x所在的集合和y所在的集合整合起来形成一个集合。
int a, b;
a = findRoot(x);
b = findRoot(y);
father[a] = b; // y连在x的根节点上 或father[b] = a为x连在y的根节点上;
}

/*
在findRoot(x)中:
路径压缩 迭代 最优版
关键在于在路径上的每个节点都可以直接连接到根上
*/

图论

MST

最小生成树

Kruskal

克鲁斯卡尔算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
|Kruskal算法|
|适用于 稀疏图 求最小生成树|
|16/11/05ztx thanks to wangqiqi|
*/

/*
第一步:点、边、加入vector,把所有边按从小到大排序
第二步:并查集部分 + 下面的code
*/

void Kruskal() {
ans = 0;
for (int i = 0; i<len; i++) {
if (Find(edge[i].a) != Find(edge[i].b)) {
Union(edge[i].a, edge[i].b);
ans += edge[i].len;
}
}
}

Prim

普里姆算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
|Prim算法|
|适用于 稠密图 求最小生成树|
|堆优化版,时间复杂度:O(elgn)|
|16/11/05ztx, thanks to chaixiaojun|
*/

struct node {
int v, len;
node(int v = 0, int len = 0) :v(v), len(len) {}
bool operator < (const node &a)const { // 加入队列的元素自动按距离从小到大排序
return len> a.len;
}
};

vector<node> G[maxn];
int vis[maxn];
int dis[maxn];

void init() {
for (int i = 0; i<maxn; i++) {
G[i].clear();
dis[i] = INF;
vis[i] = false;
}
}
int Prim(int s) {
priority_queue<node>Q; // 定义优先队列
int ans = 0;
Q.push(node(s,0)); // 起点加入队列
while (!Q.empty()) {
node now = Q.top(); Q.pop(); // 取出距离最小的点
int v = now.v;
if (vis[v]) continue; // 同一个节点,可能会推入2次或2次以上队列,这样第一个被标记后,剩下的需要直接跳过。
vis[v] = true; // 标记一下
ans += now.len;
for (int i = 0; i<G[v].size(); i++) { // 开始更新
int v2 = G[v][i].v;
int len = G[v][i].len;
if (!vis[v2] && dis[v2] > len) {
dis[v2] = len;
Q.push(node(v2, dis[v2])); // 更新的点加入队列并排序
}
}
}
return ans;
}

单源最短路

Dijkstra

迪杰斯特拉算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*
|Dijkstra算法|
|适用于边权为正的有向图或者无向图|
|求从单个源点出发,到所有节点的最短路|
|优化版:时间复杂度 O(elbn)|
|16/11/05ztx, thanks to chaixiaojun|
*/

struct node {
int v, len;
node(int v = 0, int len = 0) :v(v), len(len) {}
bool operator < (const node &a)const { // 距离从小到大排序
return len > a.len;
}
};

vector<node>G[maxn];
bool vis[maxn];
int dis[maxn];

void init() {
for (int i = 0; i<maxn; i++) {
G[i].clear();
vis[i] = false;
dis[i] = INF;
}
}
int dijkstra(int s, int e) {
priority_queue<node>Q;
Q.push(node(s, 0)); // 加入队列并排序
dis[s] = 0;
while (!Q.empty()) {
node now = Q.top(); // 取出当前最小的
Q.pop();
int v = now.v;
if (vis[v]) continue; // 如果标记过了, 直接continue
vis[v] = true;
for (int i = 0; i<G[v].size(); i++) { // 更新
int v2 = G[v][i].v;
int len = G[v][i].len;
if (!vis[v2] && dis[v2] > dis[v] + len) {
dis[v2] = dis[v] + len;
Q.push(node(v2, dis[v2]));
}
}
}
return dis[e];
}

SPFA

最短路径快速算法(Shortest Path Faster Algorithm)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/*
|SPFA算法|
|队列优化|
|可处理负环|
*/

vector<node> G[maxn];
bool inqueue[maxn];
int dist[maxn];

void Init()
{
for(int i = 0 ; i < maxn ; ++i){
G[i].clear();
dist[i] = INF;
}
}
int SPFA(int s,int e)
{
int v1,v2,weight;
queue<int> Q;
memset(inqueue,false,sizeof(inqueue)); // 标记是否在队列中
memset(cnt,0,sizeof(cnt)); // 加入队列的次数
dist[s] = 0;
Q.push(s); // 起点加入队列
inqueue[s] = true; // 标记
while(!Q.empty()){
v1 = Q.front();
Q.pop();
inqueue[v1] = false; // 取消标记
for(int i = 0 ; i < G[v1].size() ; ++i){ // 搜索v1的链表
v2 = G[v1][i].vex;
weight = G[v1][i].weight;
if(dist[v2] > dist[v1] + weight){ // 松弛操作
dist[v2] = dist[v1] + weight;
if(inqueue[v2] == false){ // 再次加入队列
inqueue[v2] = true;
//cnt[v2]++; // 判负环
//if(cnt[v2] > n) return -1;
Q.push(v2);
} } }
}
return dist[e];
}

/*
不断的将s的邻接点加入队列,取出不断的进行松弛操作,直到队列为空

如果一个结点被加入队列超过n-1次,那么显然图中有负环
*/

Floyd-Warshall

弗洛伊德算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
|Floyd算法|
|任意点对最短路算法|
|求图中任意两点的最短距离的算法|
*/

for (int i = 0; i < n; i++) { // 初始化为0
for (int j = 0; j < n; j++)
scanf("%lf", &dis[i][j]);
}
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}

二分图

染色法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*
|交叉染色法判断二分图|
|16/11/05ztx|
*/

int bipartite(int s) {
int u, v;
queue<int>Q;
color[s] = 1;
Q.push(s);
while (!Q.empty()) {
u = Q.front();
Q.pop();
for (int i = 0; i < G[u].size(); i++) {
v = G[u][i];
if (color[v] == 0) {
color[v] = -color[u];
Q.push(v);
}
else if (color[v] == color[u])
return 0;
}
}
return 1;
}

匈牙利算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/*
|求解最大匹配问题|
|递归实现|
|16/11/05ztx|
*/

vector<int>G[maxn];
bool inpath[maxn]; // 标记
int match[maxn]; // 记录匹配对象
void init()
{
memset(match, -1, sizeof(match));
for (int i = 0; i < maxn; ++i) {
G[i].clear();
}
}
bool findpath(int k) {
for (int i = 0; i < G[k].size(); ++i) {
int v = G[k][i];
if (!inpath[v]) {
inpath[v] = true;
if (match[v] == -1 || findpath(match[v])) { // 递归
match[v] = k; // 即匹配对象是“k妹子”的
return true;
}
}
}
return false;
}

void hungary() {
int cnt = 0;
for (int i = 1; i <= m; i++) { // m为需要匹配的“妹子”数
memset(inpath, false, sizeof(inpath)); // 每次都要初始化
if (findpath(i)) cnt++;
}
cout << cnt << endl;
}

/*
|求解最大匹配问题|
|dfs实现|
|16/11/05ztx|
*/

int v1, v2;
bool Map[501][501];
bool visit[501];
int link[501];
int result;

bool dfs(int x) {
for (int y = 1; y <= v2; ++y) {
if (Map[x][y] && !visit[y]) {
visit[y] = true;
if (link[y] == 0 || dfs(link[y])) {
link[y] = x;
return true;
} } }
return false;
}


void Search() {
for (int x = 1; x <= v1; x++) {
memset(visit,false,sizeof(visit));
if (dfs(x))
result++;
}
}

动态规划

背包

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/*
|01背包|
|完全背包|
|多重背包|
|16/11/05ztx|
*/

// 01背包:

void bag01(int cost,int weight) {
for(i = v; i >= cost; --i)
dp[i] = max(dp[i], dp[i-cost]+weight);
}

// 完全背包:

void complete(int cost, int weight) {
for(i = cost ; i <= v; ++i)
dp[i] = max(dp[i], dp[i - cost] + weight);
}

// 多重背包:

void multiply(int cost, int weight, int amount) {
if(cost * amount >= v)
complete(cost, weight);
else{
k = 1;
while (k < amount){
bag01(k * cost, k * weight);
amount -= k;
k += k;
}
bag01(cost * amount, weight * amount);
}
}

other

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
int dp[1000000];
int c[55], m[110];
int sum;

void CompletePack(int c) {
for (int v = c; v <= sum / 2; ++v){
dp[v] = max(dp[v], dp[v - c] + c);
}
}

void ZeroOnePack(int c) {
for (int v = sum / 2; v >= c; --v) {
dp[v] = max(dp[v], dp[v - c] + c);
}
}

void multiplePack(int c, int m) {
if (m * c > sum / 2)
CompletePack(c);
else{
int k = 1;
while (k < m){
ZeroOnePack(k * c);
m -= k;
k <<= 1;
}
if (m != 0){
ZeroOnePack(m * c);
}
}
}

LIS

最长上升子序列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/*
|最长上升子序列|
|状态转移|
|16/11/05ztx|
*/

/*
状态转移dp[i] = max{ 1.dp[j] + 1 }; j<i; a[j]<a[i];
d[i]是以i结尾的最长上升子序列
与i之前的 每个a[j]<a[i]的 j的位置的最长上升子序列+1后的值比较
*/

void solve(){ // 参考挑战程序设计入门经典;
for(int i = 0; i < n; ++i){
dp[i] = 1;
for(int j = 0; j < i; ++j){
if(a[j] < a[i]){
dp[i] = max(dp[i], dp[j] + 1);
} } }
}

/*
优化方法:
dp[i]表示长度为i+1的上升子序列的最末尾元素
找到第一个比dp末尾大的来代替
*/

void solve() {
for (int i = 0; i < n; ++i){
dp[i] = INF;
}
for (int i = 0; i < n; ++i) {
*lower_bound(dp, dp + n, a[i]) = a[i]; // 返回一个指针
}
printf("%d\n", *lower_bound(dp, dp + n, INF) - dp;
}

/*
函数lower_bound()返回一个 iterator 它指向在[first,last)标记的有序序列中可以插入value,而不会破坏容器顺序的第一个位置,而这个位置标记了一个不小于value的值。
*/

LCS

最长公共子序列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/*
|求最长公共子序列|
|递推形式|
|16/11/05ztx|
*/

void solve() {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
if (s1[i] == s2[j]) {
dp[i + 1][j + 1] = dp[i][j] + 1;
}else {
dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]);
} } }
}

计算几何

向量基本用法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/*
|16/11/06ztx|
*/

struct node {
double x; // 横坐标
double y; // 纵坐标
};

typedef node Vector;

Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Point A, Point B) { return Vector(A.x - B.y, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y*p); }

double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } // 向量点乘
double Length(Vector A) { return sqrt(Dot(A, A)); } // 向量模长
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } // 向量之间夹角

double Cross(Vector A, Vector B) { // 叉积计算 公式
return A.x*B.y - A.y*B.x;
}

Vector Rotate(Vector A, double rad) // 向量旋转 公式 {
return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));
}

Point getLineIntersection(Point P, Vector v, Point Q, Vector w) { // 两直线交点t1 t2计算公式
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w); // 求得是横坐标
return P + v*t; // 返回一个点
}

求多边形面积

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/*
|16/11/06ztx|
*/

node G[maxn];
int n;

double Cross(node a, node b) { // 叉积计算
return a.x*b.y - a.y*b.x;
}


int main()
{
while (scanf("%d", &n) != EOF && n) {
for (int i = 0; i < n; i++)
scanf("%lf %lf", &G[i].x, &G[i].y);
double sum = 0;
G[n].x = G[0].x;
G[n].y = G[0].y;
for (int i = 0; i < n; i++) {
sum += Cross(G[i], G[i + 1]);
}
// 或者
//for (int i = 0; i < n; i++) {
//sum += fun(G[i], G[(i + 1)% n]);
//}
sum = sum / 2.0;
printf("%.1f\n", sum);
}
system("pause");
return 0;
}

判断线段相交

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
|16/11/06ztx|
*/

node P[35][105];

double Cross_Prouct(node A,node B,node C) { // 计算BA叉乘CA
return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
}
bool Intersect(node A,node B,node C,node D) { // 通过叉乘判断线段是否相交;
if(min(A.x,B.x)<=max(C.x,D.x)&& // 快速排斥实验;
min(C.x,D.x)<=max(A.x,B.x)&&
min(A.y,B.y)<=max(C.y,D.y)&&
min(C.y,D.y)<=max(A.y,B.y)&&
Cross_Prouct(A,B,C)*Cross_Prouct(A,B,D)<0&& // 跨立实验;
Cross_Prouct(C,D,A)*Cross_Prouct(C,D,B)<0) // 叉乘异号表示在两侧;
return true;
else return false;
}

求三角形外心

1
2
3
4
5
6
7
8
9
10
11
12
13
/*
|16/11/06ztx|
*/

Point circumcenter(const Point &a, const Point &b, const Point &c) { //返回三角形的外心
Point ret;
double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1) / 2;
double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2) / 2;
double d = a1*b2 - a2*b1;
ret.x = a.x + (c1*b2 - c2*b1) / d;
ret.y = a.y + (a1*c2 - a2*c1) / d;
return ret;
}

极角排序

1
2
3
4
5
6
7
8
9
10
11
12
13
/*
|16/11/06ztx|
*/

double cross(point p1, point p2, point q1, point q2) { // 叉积计算
return (q2.y - q1.y)*(p2.x - p1.x) - (q2.x - q1.x)*(p2.y - p1.y);
}
bool cmp(point a, point b) {
point o;
o.x = o.y = 0;
return cross(o, b, o, a) < 0; // 叉积判断
}
sort(convex + 1, convex + cnt, cmp); // 按角排序, 从小到大

字符串

kmp

克努特-莫里斯-普拉特操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
|kmp算法|
|字符串匹配|
|17/1/21ztx|
*/

void getnext(char str[maxn], int nextt[maxn]) {
int j = 0, k = -1;
nextt[0] = -1;
while (j < m) {
if (k == -1 || str[j] == str[k]) {
j++;
k++;
nextt[j] = k;
}
else
k = nextt[k];
}
}

void kmp(int a[maxn], int b[maxn]) {
int nextt[maxm];
int i = 0, j = 0;
getnext(b, nextt);
while (i < n) {
if (j == -1 || a[i] == b[j]) { // 母串不动,子串移动
j++;
i++;
}
else {
// i不需要回溯了
// i = i - j + 1;
j = nextt[j];
}
if (j == m) {
printf("%d\n", i - m + 1); // 母串的位置减去子串的长度+1
return;
}
}
printf("-1\n");
}

kmp扩展

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
|16/11/06ztx|
*/

#include<iostream>
#include<cstring>

using namespace std;

const int MM=100005;

int next[MM],extand[MM];
char S[MM],T[MM];

void GetNext(const char *T) {
int len = strlen(T),a = 0;
next[0] = len;
while(a < len - 1 && T[a] == T[a + 1]) a++;
next[1] = a;
a = 1;
for(int k = 2; k < len; k ++) {
int p = a + next[a] - 1,L = next[k - a];
if( (k - 1) + L >= p) {
int j = (p - k + 1) > 0 ? (p - k + 1) : 0;
while(k + j < len && T[k + j] == T[j]) j++;
next[k] = j;
a = k;
}else next[k] = L;
}
}
void GetExtand(const char *S,const char *T) {
GetNext(T);
int slen = strlen(S),tlen = strlen(T),a = 0;
int MinLen = slen < tlen ? slen : tlen;
while(a < MinLen && S[a] == T[a]) a++;
extand[0] = a;
a = 0;
for(int k = 1; k < slen; k ++) {
int p = a + extand[a] - 1, L = next[k - a];
if( (k - 1) + L >= p) {
int j = (p - k + 1) > 0 ? (p - k + 1) : 0;
while(k + j < slen && j < tlen && S[k + j] == T[j]) j ++;
extand[k] = j;
a = k;
} else
extand[k] = L;
}
}
void show(const int *s,int len){
for(int i = 0; i < len; i ++)
cout << s[i] << ' ';
cout << endl;
}

int main() {
while(cin >> S >> T) {
GetExtand(S,T);
show(next,strlen(T));
show(extand,strlen(S));
}
return 0;
}

字典树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
|16/11/06ztx|
*/

struct Trie{
int cnt;
Trie *next[maxn];
Trie(){
cnt = 0;
memset(next,0,sizeof(next));
}
};

Trie *root;

void Insert(char *word) {
Trie *tem = root;
while(*word != '\0') {
int x = *word - 'a';
if(tem->next[x] == NULL)
tem->next[x] = new Trie;
tem = tem->next[x];
tem->cnt++;
word++;
}
}

int Search(char *word) {
Trie *tem = root;
for(int i=0;word[i]!='\0';i++) {
int x = word[i]-'a';
if(tem->next[x] == NULL)
return 0;
tem = tem->next[x];
}
return tem->cnt;
}

void Delete(char *word,int t) {
Trie *tem = root;
for(int i=0;word[i]!='\0';i++) {
int x = word[i]-'a';
tem = tem->next[x];
(tem->cnt)-=t;
}
for(int i=0;i<maxn;i++)
tem->next[i] = NULL;
}

int main() {
int n;
char str1[50];
char str2[50];
while(scanf("%d",&n)!=EOF) {
root = new Trie;
while(n--) {
scanf("%s %s",str1,str2);
if(str1[0]=='i') {
Insert(str2);
}else if(str1[0] == 's') {
if(Search(str2))
printf("Yes\n");
else
printf("No\n");
}else {
int t = Search(str2);
if(t)
Delete(str2,t);
} } }
return 0;
}

AC自动机

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/*
|16/11/06ztx|
*/

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>

using namespace std;

#define N 1000010

char str[N], keyword[N];
int head, tail;

struct node {
node *fail;
node *next[26];
int count;
node() { //init
fail = NULL;// 默认为空
count = 0;
for(int i = 0; i < 26; ++i)
next[i] = NULL;
}
}*q[N];

node *root;

void insert(char *str) { // 建立Trie
int temp, len;
node *p = root;
len = strlen(str);
for(int i = 0; i < len; ++i) {
temp = str[i] - 'a';
if(p->next[temp] == NULL)
p->next[temp] = new node();
p = p->next[temp];
}
p->count++;
}

void build_ac() { // 初始化fail指针,BFS 数组模拟队列:
q[tail++] = root;
while(head != tail) {
node *p = q[head++]; // 弹出队头
node *temp = NULL;
for(int i = 0; i < 26; ++i) {
if(p->next[i] != NULL) {
if(p == root) { // 第一个元素fail必指向根
p->next[i]->fail = root;
}else {
temp = p->fail; // 失败指针
while(temp != NULL) { // 2种情况结束:匹配为空or找到匹配
if(temp->next[i] != NULL) { // 找到匹配
p->next[i]->fail = temp->next[i];
break;
}
temp = temp->fail;
}
if(temp == NULL) // 为空则从头匹配
p->next[i]->fail = root;
}
q[tail++] = p->next[i]; // 入队
} } }
}

int query() // 扫描
{
int index, len, result;
node *p = root; // Tire入口
result = 0;
len = strlen(str);
for(int i = 0; i < len; ++i)
{
index = str[i] - 'a';
while(p->next[index] == NULL && p != root) // 跳转失败指针
p = p->fail;
p = p->next[index];
if(p == NULL)
p = root;
node *temp = p; // p不动,temp计算后缀串
while(temp != root && temp->count != -1) {
result += temp->count;
temp->count = -1;
temp = temp->fail;
}
}
return result;
}

int main() {
int num;
head= tail = 0;
root = new node();
scanf("%d", &num);
getchar();
for(int i = 0; i < num; ++i) {
scanf("%s",keyword);
insert(keyword);
}
build_ac();
scanf("%s", str);
if(query())
printf("YES\n");
else
printf("NO\n");
return 0;
}

/*
假设有N个模式串,平均长度为L;文章长度为M。 建立Trie树:O(N*L) 建立fail指针:O(N*L) 模式匹配:O(M*L) 所以,总时间复杂度为:O( (N+M)*L )。
*/

线段树

线段树
1)点更新

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
|16/12/07ztx|
*/

struct node
{
int left, right;
int max, sum;
};

node tree[maxn << 2];
int a[maxn];
int n;
int k = 1;
int p, q;
string str;

void build(int m, int l, int r)//m 是 树的标号
{
tree[m].left = l;
tree[m].right = r;
if (l == r){
tree[m].max = a[l];
tree[m].sum = a[l];
return;
}
int mid = (l + r) >> 1;
build(m << 1, l, mid);
build(m << 1 | 1, mid + 1, r);
tree[m].max = max(tree[m << 1].max, tree[m << 1 | 1].max);
tree[m].sum = tree[m << 1].sum + tree[m << 1 | 1].sum;
}

void update(int m, int a, int val)//a 是 节点位置, val 是 更新的值(加减的值)
{
if (tree[m].left == a && tree[m].right == a){
tree[m].max += val;
tree[m].sum += val;
return;
}
int mid = (tree[m].left + tree[m].right) >> 1;
if (a <= mid){
update(m << 1, a, val);
}
else{
update(m << 1 | 1, a, val);
}
tree[m].max = max(tree[m << 1].max, tree[m << 1 | 1].max);
tree[m].sum = tree[m << 1].sum + tree[m << 1 | 1].sum;
}

int querySum(int m, int l, int r)
{
if (l == tree[m].left && r == tree[m].right){
return tree[m].sum;
}
int mid = (tree[m].left + tree[m].right) >> 1;
if (r <= mid){
return querySum(m << 1, l, r);
}
else if (l > mid){
return querySum(m << 1 | 1, l, r);
}
return querySum(m << 1, l, mid) + querySum(m << 1 | 1, mid + 1, r);
}

int queryMax(int m, int l, int r)
{
if (l == tree[m].left && r == tree[m].right){
return tree[m].max;
}
int mid = (tree[m].left + tree[m].right) >> 1;
if (r <= mid){
return queryMax(m << 1, l, r);
}
else if (l > mid){
return queryMax(m << 1 | 1, l, r);
}
return max(queryMax(m << 1, l, mid), queryMax(m << 1 | 1, mid + 1, r));
}

build(1,1,n);
update(1,a,b);
query(1,a,b);

区间更新

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/*
|16/11/06ztx|
*/

typedef long long ll;
const int maxn = 100010;

int t,n,q;
ll anssum;

struct node{
ll l,r;
ll addv,sum;
}tree[maxn<<2];

void maintain(int id) {
if(tree[id].l >= tree[id].r)
return ;
tree[id].sum = tree[id<<1].sum + tree[id<<1|1].sum;
}

void pushdown(int id) {
if(tree[id].l >= tree[id].r)
return ;
if(tree[id].addv){
int tmp = tree[id].addv;
tree[id<<1].addv += tmp;
tree[id<<1|1].addv += tmp;
tree[id<<1].sum += (tree[id<<1].r - tree[id<<1].l + 1)*tmp;
tree[id<<1|1].sum += (tree[id<<1|1].r - tree[id<<1|1].l + 1)*tmp;
tree[id].addv = 0;
}
}

void build(int id,ll l,ll r) {
tree[id].l = l;
tree[id].r = r;
tree[id].addv = 0;
tree[id].sum = 0;
if(l==r) {
tree[id].sum = 0;
return ;
}
ll mid = (l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
maintain(id);
}

void updateAdd(int id,ll l,ll r,ll val) {
if(tree[id].l >= l && tree[id].r <= r)
{
tree[id].addv += val;
tree[id].sum += (tree[id].r - tree[id].l+1)*val;
return ;
}
pushdown(id);
ll mid = (tree[id].l+tree[id].r)>>1;
if(l <= mid)
updateAdd(id<<1,l,r,val);
if(mid < r)
updateAdd(id<<1|1,l,r,val);
maintain(id);
}

void query(int id,ll l,ll r) {
if(tree[id].l >= l && tree[id].r <= r){
anssum += tree[id].sum;
return ;
}
pushdown(id);
ll mid = (tree[id].l + tree[id].r)>>1;
if(l <= mid)
query(id<<1,l,r);
if(mid < r)
query(id<<1|1,l,r);
maintain(id);
}

int main() {
scanf("%d",&t);
int kase = 0 ;
while(t--){
scanf("%d %d",&n,&q);
build(1,1,n);
int id;
ll x,y;
ll val;
printf("Case %d:\n",++kase);
while(q--){
scanf("%d",&id);
if(id==0){
scanf("%lld %lld %lld",&x,&y,&val);
updateAdd(1,x+1,y+1,val);
}
else{
scanf("%lld %lld",&x,&y);
anssum = 0;
query(1,x+1,y+1);
printf("%lld\n",anssum);
} } }
return 0;
}

树状数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*
|16/11/06ztx|
*/

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>

using namespace std;

typedef long long ll;

const int maxn = 50005;

int a[maxn];
int n;

int lowbit(const int t) {
return t & (-t);
}

void insert(int t, int d) {
while (t <= n){
a[t] += d;
t = t + lowbit(t);
}
}

ll getSum(int t) {
ll sum = 0;
while (t > 0){
sum += a[t];
t = t - lowbit(t);
}
return sum;
}

int main() {
int t, k, d;
scanf("%d", &t);
k= 1;
while (t--){
memset(a, 0, sizeof(a));
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d", &d);
insert(i, d);
}
string str;
printf("Case %d:\n", k++);
while (cin >> str) {
if (str == "End") break;
int x, y;
scanf("%d %d", &x, &y);
if (str == "Query")
printf("%lld\n", getSum(y) - getSum(x - 1));
else if (str == "Add")
insert(x, y);
else if (str == "Sub")
insert(x, -y);
}
}
return 0;
}

其他

中国剩余定理(孙子定理)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/*
|16/11/06ztx|
*/

int CRT(int a[],int m[],int n) {
int M = 1;
int ans = 0;
for(int i=1; i<=n; i++)
M *= m[i];
for(int i=1; i<=n; i++) {
int x, y;
int Mi = M / m[i];
extend_Euclid(Mi, m[i], x, y);
ans = (ans + Mi * x * a[i]) % M;
}
if(ans < 0) ans += M;
return ans;
}

void extend_Euclid(int a, int b, int &x, int &y) {
if(b == 0) {
x = 1;
y = 0;
return;
}
extend_Euclid(b, a % b, x, y);
int tmp = x;
x = y;
y = tmp - (a / b) * y;
}
---------------- The End ----------------
0%